Use of Synthetic Data in Testing Administrative Records Systems

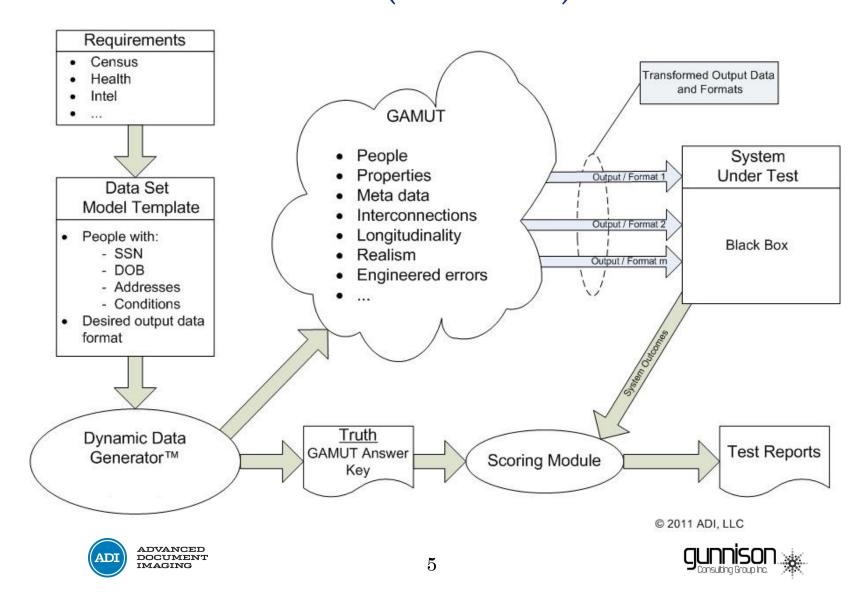
A presentation to the FCSM Tuesday, 10 Jan 2012

Some Background on ADI, LLC

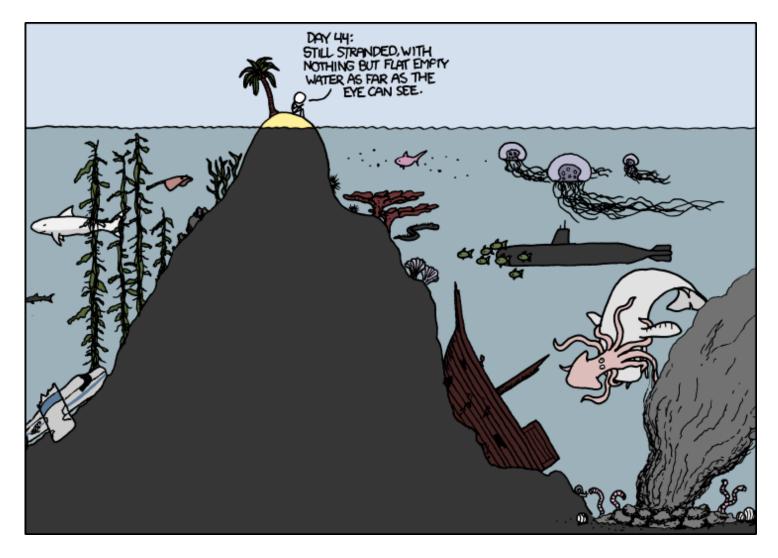
- ☐ Synthetic data from ADI was used in the 2010 Census for more cost-effective and precise testing of data capture
- ☐ This data was supplied in Digital Test Decks®, corresponding image files, and scripts for testing data capture modes other than paper
- ☐ Independently designed and developed a generic and powerful "Dynamic Data Generator™" (DDG) for creating synthetic test data
- ☐ Also doing medical (IBM) and intelligence (DARPA) synthetic data sets

Security Aspects

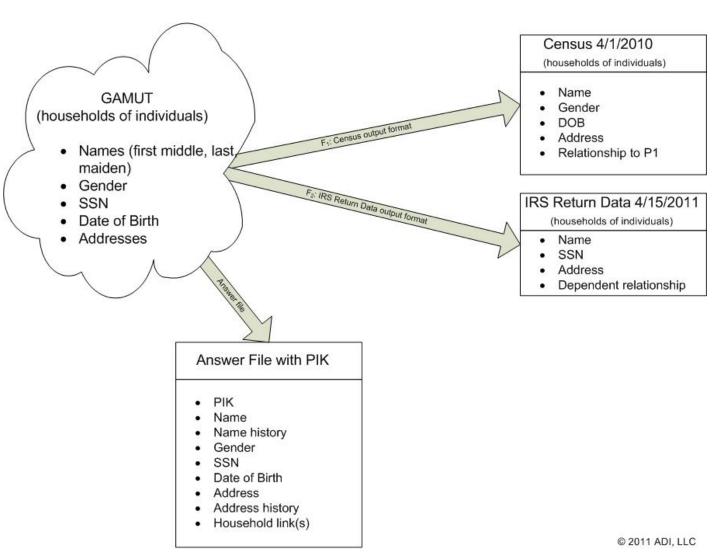
- ☐ Program security around real data precludes engaging industry for scientific study, market research, and for consistent evaluation of multiple vendors
 - In Medical records, there are *HIPAA* laws
 - In Census records, there is *Title 13*
 - In IRS records, there is *Title 26*
 - In SSA records, there is the *Privacy Act of 1974 (5 U.S.C. § 552a)*
 - •
- ☐ Our synthetic data is realistic, but not real!


Testing Administrative Records Systems with Synthetic Data

- ☐ Administrative Records will be very useful to Census, but testing the systems that are being developed to use them is extremely difficult
- ☐ Present testing approaches use large files of "real" data for which the "truth" is not known
- ☐ Synthetic, yet realistic data sets, <u>designed for test</u>, and for which the truth <u>is</u> known allows for quick, costeffective and precise testing and quantitative scoring
- ☐ Both true and false positives may be measured and used to improve systems in development



Great Automated Model Universe for Test (GAMUT)


A "Peek" at the GAMUT?

Today's GAMUT Example

Demo GAMUT Characteristics

- □(Only) about 1000 synthetic households generated for this demo GAMUT
- ☐ Two data feeds were made: Census and Tax (IRS)
- ☐Geographic scope:
 - DC, New Mexico, West Virginia

Data Feed Characteristics

□Census Data Feed:

- Snapshot on 1 Apr 2010
- Names, DOB, Gender, Relationships
- Addresses
- PIK Numbers

□IRS Return Data Feed:

- Snapshot on 15 Apr 2011
- SSNs
- Names, Addresses
- Dependent Relationships

Some GAMUT Demo "Features"

□ Census

- Dupes 2%
- Person 1 DOB missing or morphed (1-2%)
- Name morphing 2%
- Coverage 99%

\Box Tax

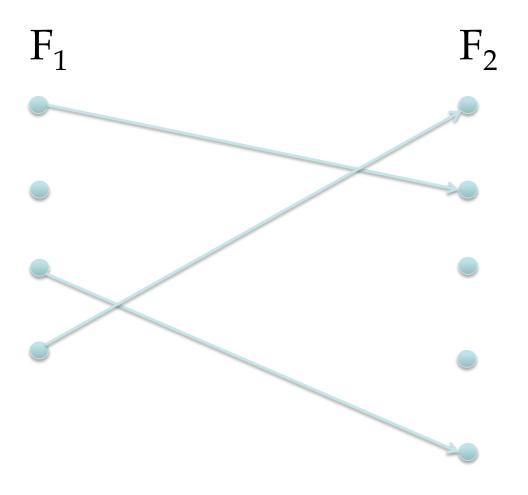
- Filer SSN can be both husband and wife
- Filer name can be concatenation of both
- Moves 10%
- Coverage 85%

Test Example: Person Matching

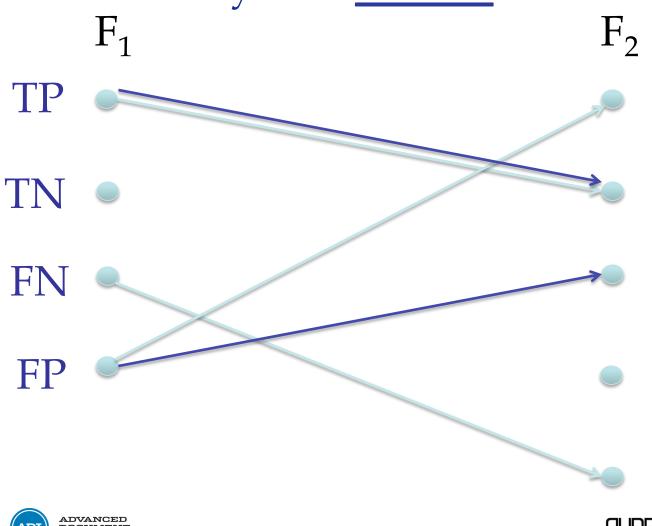
- Using this data, we explain how testing can be done using GAMUT and how to analyze the results with a classic Receiver Operating Characteristic (ROC) technique
- □ For this example, we are just looking at testing a hypothetical RL system that does matching of Census feed Person 1 to Tax Filers in Tax feed

Test Plan: Person Matching

- \square Output/Format 1 is F_1 = Census Data
- \square Output/Format 2 is F_2 = IRS Tax Data
- □Say for each unique person in F_1 , the System Under Test (SUT) is to predict the best person match(s) in F_2 if any
- □Say there are N matches in the Truth, adding up both positive and negative matches
- ☐ The GAMUT Truth is M positive matches
 - \triangleright Therefore $M \le N$


Test Plan: Cont.

- □ The SUT predicts m matches $(0 \le m \le N)$
- □Of the m matches, GAMUT Truth says cm of them are correct $(0 \le c \le 1)$: "True Positives"
- □ Therefore m cm = m(1 c) are "False Positives" (Type I errors)
- ☐Also, one can compute:
 - ➤"False Negatives" = M cm (Type II errors)
 - \succ "True Negatives" = N M m(1 c)

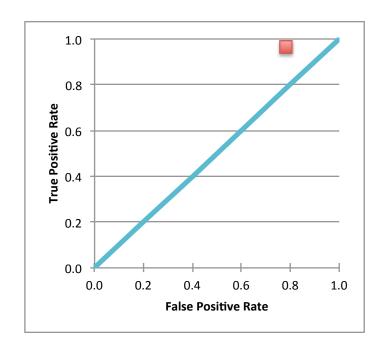

Example of Test Truth

Example of Test **Truth** with Classification System Results

Confusion Matrix

		SUT Prediction	SUT Prediction	Row Sums
		Positive Match	Negative Match	
Data Truth	Positive Match	TP cm	FN M - cm	M
Data Truth	Negative Match	FP m(1 - c)	TN N - M - m(1 - c)	N - M
Column Sums		m	N - m	N

FP are Type I errors; FN are Type II

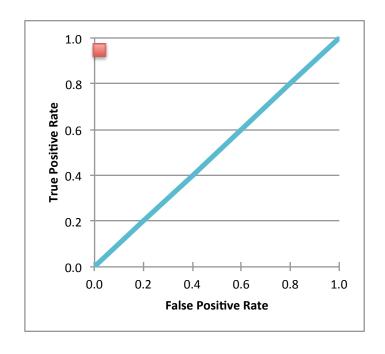

Example Test - Case A

Generic ROC Plot and Confusion Matrix (Case A)

N	M	m	С
985	848	925	0.8843

	Prediction	_	
	Pos	Neg	
Pos	818	30	848
Neg	107	30	137
	925	60	985

TPR	FPR	Α	f
0.965	0.781	0.861	0.923


Example Test - Case B

Generic ROC Plot and Confusion Matrix (Case B)

N	M	m	С
985	848	808	0.9963

	Prediction	_	
	Pos	Neg	
Pos	805	43	848
Neg	3	134	137
	808	177	985

TPR	FPR	Α	f
0.949	0.022	0.953	0.972

Conclusions

- ☐ The use of synthetic GAMUT testing data can significantly speed up and improve Administrative Records testing at Census, leading to improved system performance
- ☐ It can also help in other areas, for example:
 - Record Linkage Generally
 - Data Capture (all "modes")
 - Health Records Systems
 - Intelligence Systems
 - Census 2020 Research and Evaluations
- Remember, we don't aim to <u>replace</u> testing with "real" data, but rather to <u>supplement</u> it to speed up the development process to achieve quality software that's scalable and ready for production

Questions or Comments?

- **Contact**:
 - Brad Paxton <u>brad.paxton@adillc.net</u>
 - Steve Spiwak <u>steve.spiwak@adillc.net</u>
 - Tom Hager tom.hager@adillc.net
- □ADI Website:
 - www.adillc.net
- ☐Sample data available on request

